3.1.1 \(\int \tan (c+d x) \, dx\) [1]

Optimal. Leaf size=12 \[ -\frac {\log (\cos (c+d x))}{d} \]

[Out]

-ln(cos(d*x+c))/d

________________________________________________________________________________________

Rubi [A]
time = 0.00, antiderivative size = 12, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {3556} \begin {gather*} -\frac {\log (\cos (c+d x))}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x],x]

[Out]

-(Log[Cos[c + d*x]]/d)

Rule 3556

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \tan (c+d x) \, dx &=-\frac {\log (\cos (c+d x))}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 12, normalized size = 1.00 \begin {gather*} -\frac {\log (\cos (c+d x))}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x],x]

[Out]

-(Log[Cos[c + d*x]]/d)

________________________________________________________________________________________

Maple [A]
time = 0.03, size = 17, normalized size = 1.42

method result size
derivativedivides \(\frac {\ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2 d}\) \(17\)
default \(\frac {\ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2 d}\) \(17\)
norman \(\frac {\ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2 d}\) \(17\)
risch \(i x +\frac {2 i c}{d}-\frac {\ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}{d}\) \(30\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c),x,method=_RETURNVERBOSE)

[Out]

1/2/d*ln(1+tan(d*x+c)^2)

________________________________________________________________________________________

Maxima [A]
time = 0.27, size = 11, normalized size = 0.92 \begin {gather*} \frac {\log \left (\sec \left (d x + c\right )\right )}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c),x, algorithm="maxima")

[Out]

log(sec(d*x + c))/d

________________________________________________________________________________________

Fricas [A]
time = 0.41, size = 18, normalized size = 1.50 \begin {gather*} -\frac {\log \left (\frac {1}{\tan \left (d x + c\right )^{2} + 1}\right )}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c),x, algorithm="fricas")

[Out]

-1/2*log(1/(tan(d*x + c)^2 + 1))/d

________________________________________________________________________________________

Sympy [A]
time = 0.04, size = 19, normalized size = 1.58 \begin {gather*} \begin {cases} \frac {\log {\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} & \text {for}\: d \neq 0 \\x \tan {\left (c \right )} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c),x)

[Out]

Piecewise((log(tan(c + d*x)**2 + 1)/(2*d), Ne(d, 0)), (x*tan(c), True))

________________________________________________________________________________________

Giac [A]
time = 0.42, size = 13, normalized size = 1.08 \begin {gather*} -\frac {\log \left ({\left | \cos \left (d x + c\right ) \right |}\right )}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c),x, algorithm="giac")

[Out]

-log(abs(cos(d*x + c)))/d

________________________________________________________________________________________

Mupad [B]
time = 2.57, size = 16, normalized size = 1.33 \begin {gather*} \frac {\ln \left ({\mathrm {tan}\left (c+d\,x\right )}^2+1\right )}{2\,d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x),x)

[Out]

log(tan(c + d*x)^2 + 1)/(2*d)

________________________________________________________________________________________